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Abstract
We consider the stability of a general quantum algorithm (QA) with respect to
a fixed but unknown residual interaction between qubits, and show a surprising
fact, namely that the average fidelity of quantum computation increases on
decreasing the average time correlation function of the perturbing operator in
sequences of consecutive quantum gates. Our thinking is applied to the quantum
Fourier transformation, where an alternative ‘less regular’ QA is devised, which
is qualitatively more robust against static random residual n-qubit interaction.

PACS numbers: 03.67.Lx, 05.45.-a, 05.45.Mt

Recent investigations of theoretical and experimental possibilities of quantum information
processing have made the idea of quantum computation [1] very attractive and important (see
e.g. [2] for a review). Having apparatus which is capable of manipulation and measurement of
pure states of individual quantum systems, one can make use of the massive intrinsic parallelism
of coherent quantum time evolution.

The main idea of quantum computation is the following: consider a many-body system of
n elementary two-level quantum excitations—qubits, which is called the quantum register,
store the data for quantum computation in the initial state of a register |r〉 which is a
superposition of an exponential number N = 2n of basic qubit states, then perform certain
unitary transformation U by decomposing U = U(T ) · · · U(2)U(1) into a sequence of T

elementary one-qubit and two-qubit quantum gates U(t), t = 1, 2, . . . , T , such decomposition
being called a quantum algorithm (QA), and in the end obtain the results by performing
measurements of qubits on a final register state U |r〉. QA is called efficient if the number of
needed elementary gates T grows with at most polynomial rate in n = log2 N , and only in
this case can it generally be expected to outperform the best classical algorithms (in the limit
n → ∞). At present only a few efficient QAs are known, and perhaps the most generally
useful is the quantum Fourier transformation (QFT) [3].

There are two major obstacles for performing practical quantum computation: first, there is
a problem of decoherence [4] resulting from an unavoidable time-dependent coupling between
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qubits and the environment. If the perturbation couples only a small number of qubits at a time
then such errors can be eliminated at the expense of extra qubits by quantum error correcting
codes [5] (see [6] for another approach). Second, even if one knows an efficient error correcting
code or assumes that quantum computer is ideally decoupled from the environment, there will
typically exist a small unknown or uncontrollable residual interaction among qubits, which
one may describe by a general static perturbation. Therefore, understanding the stability of
QAs with respect to various types of perturbation is an important problem (see [7–9] for some
results on this topic).

Motivated by [10], we propose a new approach to the stability of quantum computation
with respect to a static but incurable (perhaps unknown) perturbing interaction. We consider the
QA as a time-dependent dynamical system and relate its fidelity measuring the Hilbert space
distance between computed states of exact and perturbed algorithm in terms of integrated
time autocorrelation of the perturbing operator (generalizing [11]). The derived relation looks
very surprising: it tells us that faster decay of time correlations of the perturbation between
sequences of successive quantum gates means larger fidelity, and vice versa. We propose to use
our rule of thumb as a guide to devise or to improve QAs, either by introducing extra ‘chaotic’
gates or by rewriting the gates in a different order in order to make time evolution U(t) ‘more
chaotic’. As an important example, the well known QFT algorithm, whose internal dynamics
appears unpleasantly ‘regular’, has been improved in a way such that the modified algorithm
becomes qualitatively more robust against static random perturbation of the gates. We think
our effect should be considered in experimental realization of QFTs which are underway [12].

Let us write the partial evolution operator for a sequence of consecutive gates from t ′ to
t , t ′ < t , as U(t, t ′) = U(t)U(t − 1) · · · U(t ′ + 2)U(t ′ + 1), with U(t, t) ≡ 1, and perturb
the quantum gates by a (generally time-dependent) perturbation of strength δ generated by
Hermitian operators V (t)

Uδ(t) = exp(−iδV (t))U(t). (1)

Propagating the initial register state |r〉 with exact and perturbed algorithms we focus on the
fidelity of the QA defined as

F(T ) = 1

N tr U
†
δ (T , 0)U(T , 0) (2)

as an average over all initial register states. Defining the Heisenberg time evolution from t ′ to t ,
V (t, t ′) = U †(t, t ′)V (t)U(t, t ′), we rewrite the fidelity as

F(T ) = 1

N tr
(
eiδV (1,0)eiδV (2,0) · · · eiδV (T ,0)

)
(3)

by T insertions of the unity U †(t, 0)U †(t, 0) = 1 and observing U †(t, 0)U
†
δ (t)U(t, 0) =

exp(iδV (t − 1, 0)) as t runs from T down to 1.
Next we make a series expansion in δ expressing the fidelity in terms of correlation

functions

F(T ) = 1 +
1

N
∞∑

m=1

imδm

m!

T∑
t1,...,tm=1

tr

(
T̂

m∏
j=1

V (tj , 0)

)
(4)

where T̂ is a left-to-right time ordering (w.r.t. indices tj ). We can make the series starting
at second order m = 2 by assuming the average perturbation to be traceless, tr V̄ =
(1/T )

∑T
t=1 tr V (t, 0) ≡ 0 (otherwise, the effect of subtracting the trace average is a simple

complex rotation of fidelity). To second order in δ, the fidelity can be written as

F(T ) = 1 − δ2

2

T∑
t,t ′=1

C(t, t ′) + O(δ3) (5)
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in terms of a two-point time correlation (correlator) of the perturbation C(t, t ′) := C(t ′, t) :=
tr(V (t ′, 0)V (t, 0))/N = tr(V (t ′)V (t, t ′))/N . The relation (5) is very interesting: it tells us
that the QA is more stable if the time correlations of the perturbation are smaller on average,
meaning that the ‘chaotic’ quantum time evolution is more stable than the ‘regular’ one [11].
One may use this general philosophy as a guide to design QAs, or to improve the existing ones
by rearranging quantum gates.

However, the behaviour of the correlation function depends also on the explicit time
(in-) dependence of the perturbation V (t). For example, if the perturbation V (t) is an
uncorrelated noise, as it would be in the case of coupling to an ideal heat bath, then the matrix
elements of V (t) may be assumed to be Gaussian random with variances 〈Vjk(t)Vlm(t ′)〉noise =
(1/N )δjmδklδtt ′ . Hence one finds 〈C(t, t ′)〉noise = δtt ′ , and averaging of a formula (4) yields
the noise-averaged fidelity 〈F(T )〉noise = exp(−δ2T/2), which is independent of the QA U(t).
On the other hand, for a static residual interaction V (t) ≡ V one may expect slower correlation
decay, depending on the ‘regularity’ of the evolution operator U , and hence faster decay of
fidelity. Importantly, note that in a physical situation, where perturbation is expected to be a
combination V (t) = Vstatic + Vnoise(t), the fidelity drop due to a static component is expected
to dominate long-time quantum computation T → ∞ over the noise component (e.g. due to
decoherence), as soon as the QA exhibits long-time correlations of the operator Vstatic. Since
the sequence of gates to accomplish a certain task U is by no means unique, the natural question
arises of how to write the QA in order to have the fastest decay of time correlations with respect
to a static, say Gaussian random (GUE), perturbation.

We consider QFT working in a Hilbert space of dimension N = 2n with basis qubit
states denoted by |k〉, k = 0, . . . , 2n − 1. The unitary matrix UQFT performs the following
transformation on a state with expansion coefficients xk:

UQFT

( N−1∑
k=1

xk|k〉
)

=
N−1∑
k=1

x̃k|k〉 (6)

where x̃k = 1√
N

∑N−1
j=1 exp (2π ijk/N )xj . The ‘dynamics’ of QFT consists of three kinds of

unitary gate: one-qubit gates Aj acting on the j th qubit

Aj = 1√
2

(
1 1
1 −1

)
(7)

diagonal two-qubit gates Bjk = diag{1, 1, 1, exp (iθjk)}, with θjk = π/2k−j , and transposition
gates Tjk , which interchange j th and kth qubits. There are n A-gates, n(n − 1)/2 B-gates and
[n/2] transposition gates, where [x] is an integer part of x. The total number of gates for the
whole algorithm is therefore T = [n(n + 2)/2]. For instance, in the case of n = 4 we have a
sequence of T = 12 gates (time runs from right to left)

UQFT = T03T12A0B01B02B03A1B12B13A2B23A3. (8)

In what follows we shall focus on a static random perturbation, that isV (t) ≡ V is a random
N -dimensional GUE matrix with normalized second moments 〈VjkVlm〉 = δjmδkl/N , where
〈·〉 denotes an average over GUE. For small perturbation strength δ the quantity controlling
the fidelity (5) is the correlator

〈C(t, t ′)〉 = 1

N 〈tr(V (t, t ′)V )〉 =
∣∣∣∣ 1

N tr U(t, t ′)
∣∣∣∣
2

. (9)

Averaging over GUE is done only to ease up analytical calculation and to yield a quantity that
is independent of a particular realization of perturbation. Qualitatively similar (numerical)
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results are obtained without the averaging. We have 〈C(t, t)〉 ≡ 1 due to normalization of the
second moments of GUE, while for an arbitrary fixed V the diagonal correlator is

C(t, t) = C(0, 0) = 1

N tr V 2. (10)

In a sum of correlation function (5) we must therefore distinguish two contributions: (i) the
diagonal correlator (10) just sets an overall scale. This is a static quantity as it depends on the
strength of a perturbation V only and can be included in δ by normalizing tr V 2/N = 1. (ii)
The off-diagonal contribution is mainly determined by the rate of decay of C(t, t ′) as t − t ′

increases, which is an essential dynamical feature of the QA.
We have calculated the correlator 〈C(t, t ′)〉 for QFT (9), which is shown in the top panel

of figure 1. One can clearly see square red plateaus on the diagonal due to blocks of successive
B-gates. Similar square plateaus can also be seen off diagonal (from orange to yellow to green),
so the correlation function has a staircase-like structure, with the A-gates responsible for the
drops and B-gates responsible for the flat regions in between. This can be easily understood.
For ‘distant’ qubits k−j � 1 the gates Bjk are close to identity and therefore cannot reduce the
correlator. This slow correlation decay results in the correlation sum χ := 1

2

∑T
t,t ′=1 C(t, t ′)

being proportional to χ ∝ n3 (sum of the first n squares) as compared with the theoretical
minimum χ ∝ T ∝ n2.

In view of this, we shall now try to rewrite the QFT with the goal of accomplishing χ ∝ n2.
From (9) we learn that the gates that are traceless (e.g. A-gates) reduce the correlator very
effectively. In the plain QFT algorithm (8) we have n − 1 blocks of B-gates, where in each
block all B-gates act on the same first qubit, say j . In each such block, we propose to replace
Bjk with a new gate Gjk = R†

jkBjk , where unitary gate Rjk will be chosen so as to commute
with all the diagonal gates Bj l in the block, whereas at the end of the block we shall insert Rjk

in order to ‘annihilate’ R†
jk so as to preserve the evolution matrix of a whole block. Unitarity

condition R†
jkRjk = 1 and [Rjk, Bj l] = 0 for all j, k, l leave us with a six-parametric set of

matrices Rjk . By further enforcing tr Rjk = 0 in order to maximally reduce the correlator, we
end up with four free real parameters in Rjk . One of the simplest choices, that has been proved
to be equally as suitable as any other, is the following:

Rjk =




0 0 −1 0
0 1 0 0
1 0 0 0
0 0 0 −1


 . (11)

Furthermore, we find that R-gates also commute among themselves, [Rjk, Rj l] = 0, which
enables us to write a sequence of R-gates however we like, for example in the same order as
a sequence of Gs, so that pairs of gates Gjk , Rjk operating on the same pair of qubits (j, k),
whose product is a bad gate Bjk , are never neighbouring. This is best illustrated by an example.
For instance, the block B01B02B03 will be replaced by R01R02R03R†

01B01R†
02B02R†

03B03 =
R01R02R03G01G02G03. This is how we construct an improved Fourier transform algorithm
(IQFT). For IQFT we need one additional type of gate; instead of diagonal B-gates, we use
nondiagonal R and G. To illustrate the obvious general procedure we write out the whole
IQFT algorithm for n = 4 qubits (compare with (8))

UIQFT = T03T12A0R01R02R03G01G02G03A1R12R13G12G13A2R23G23A3. (12)

Such an IQFT algorithm consists of a total of T = [n(2n + 1)/2] gates (note that it does
not pay to replace the block with a single B gate as we have done, so we could safely leave
B23 ≡ R23G23). The correlation function for the IQFT algorithm is shown in the bottom panel
of figure 1. Almost all off-diagonal correlations are greatly reduced (to the level ∝ 1/N 2),
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Figure 1. Correlation function 〈C(t, t ′)〉 for n = 10 qubits and GUE perturbation. The top panel
shows standard QFT (8) with T = 60, while the bottom panel shows IQFT with T = 105 gates.
Colour represents the size of elements in a log-scale from red (e−0) to blue (e−14 and less).

leaving us only with a dominant diagonal. If we had only diagonal elements, the fidelity
would be 〈F(T )〉 = 1 − δ2 T

2 (as in the case of noisy perturbation or decoherence, however
with a different physical meaning of the strength scale δ) where the number of gates scales
as T ∝ n2. From the pictures (1) it is clear that we have very fast correlation decay for
IQFT so the correlation sum χ has decreased from χ ∝ n3 to χ ∝ n2 behaviour. To further
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Figure 2. Dependence of fidelity |〈F(T )〉| on the number of qubits n for QFT (pluses) and
IQFT algorithms (crosses), for fixed δ = 0.04. Numerical averaging over 50 GUE realizations
is performed. The full curve is exp (−δ2{0.236n3 − 0.38n2 + 1.45n}) and the dashed one is
exp (−δ2{0.61n2 + 0.89n}). For n = 10 the trace is approximated by an average over 200 Gaussian
random register states.

illustrate this, we have numerically calculated the fidelity by simulating the QA and applying
perturbation exp (−iδV ) at each gate. The results are shown in figure 2. The difference
between ∝ n2 and ∝ n3 behaviour is nicely seen. As we have argued before, the sum of
the two-point correlator (5) gives us only the first nontrivial order in the δ-expansion. For
dynamical systems, being either integrable or mixing and ergodic, it has been shown [11]
that higher orders of (4) can also typically be written as simple powers of the correlation sum
χ , so the fidelity has a simple functional form F(t) = exp(−χδ2). Although the QA has
quite inhomogeneous time dependence, we may still hope that exp (−χδ2) is also a reasonable
approximation to the fidelity at higher orders in δ. This is in fact the case as can be seen in
figure 3. Note also that the leading coefficient in the exponent for IQFT, limn→∞ χ/n2 = 0.61,
is close to the theoretical minimum of 0.5.

As the definition of what is a fundamental single gate is somewhat arbitrary, the problem
of minimizing the sum χ depends on a given technical realization of gates and the nature
of the residual perturbation V for an experimental setup. We should mention that the
optimization becomes harder if we consider few-body (e.g. two-body random) perturbation.
This is connected with the fact that quantum gates are two-body operators and can perform
only a very limited set of rotations on a full Hilbert space, and consequently have a limited
capability of reducing correlation functions in a single step. However, our simple approach
based on n-body random matrices seems reasonable if errors due to unwanted few-body qubit
interactions can be eliminated by other methods [5, 6].

In conclusion, we have presented a novel approach to the stability of time-dependent
quantum dynamics applied to the fidelity of quantum computation. For an uncorrelated time-
dependent perturbation, the decay of fidelity does not depend on dynamics; however, for a
static perturbation characterizing faulty gates the system is more stable, as reflected in a higher
fidelity, the more ‘chaotic’ it is and the faster correlation decay it has. Our idea is demonstrated
on the example of the QFT algorithm perturbed by a GUE matrix, devising an alternative QFT
which is qualitatively more robust against a static random perturbation of the gates. It is an
interesting question how this dynamical enhancement of stability relates to ‘chaotic melting’
of a static quantum computer [13].
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Figure 3. Dependence of fidelity |〈F(T )〉| on δ for QFT (pluses) and IQFT (crosses), for fixed
n = 8. Solid curves are functions exp (−χδ2) (see the text) with χ calculated analytically (9) and
equal to χ = 108 for QFT and 46.6 for IQFT.
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